Foundations of Probabilistic Proofs

A course by **Alessandro Chiesa**

Lecture 01

Intro to IPs

What are Mathematical Proofs?

One answer: an approximation of understanding.

"A proof is whatever convinces me." (Shimon Even, 1978)

[Stories about Shimon Even]
by Oded Goldreich

Logic formalizes the notion of "proof" so it can be studied using mathematics itself.

In particular this leads to METAMATHEMATICS.

INTRODUCTION TO METAMATHEMATICS

WAIIIEWAI

A formal system is a tuple (alphabet, grammar, axioms, inference rules).

STEPHEN COLE KLEENE

A (true) theorem is a sentence that has a (valid) proof:

a list of sentences whose last sentence is the theorem such that every sentence is an axiom, an assumption, or derived from prior sentences.

· a logical derivation from axioms & assumptions

Fundamental question: HILBERT'S ENTSCHEIDUNGSPROBLEM is there a procedure to determine if a sentence is a theorem?

V sentence x x or x has a proof

If sentence x; at most one of x or x. has a proof

NO no such procedure exists

1931: Gödel {IT1: every strong enough formal system is not complete IT2: every strong enough formal system cannot prove its own consistency

1935: Church (via 1-calculus)

1936: Turing (via Turing machines)

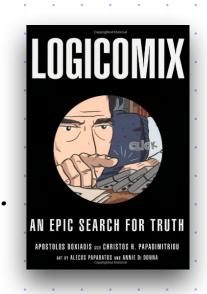
Proofs and Computation

Mathematical proofs were implicitly always about computation.

Formulating (and answering) the Entscheidungsproblem made this explicit.

Computation is formalized via Turing machines (and other equivalent models).

This enables the study of Computability Theory and Complexity Theory.



Undecidability of a language rules out any mathematical proof.

Languages with Nondeterministic Witnesses correspond to theorems with mathematical proofs:

A language L is in NTIME[T] iff \exists machine M that runs in time T(|x|) s.t.

theorem

completeness: \forall instance $x \in L \exists T(|x|)$ -size witness w = M(x,w) = 1

• Soundness: \forall instance $x \not\in L \ \forall \ T(|x|)$ -size witness $w \ M(x,w) = 0$

The NTIME-hiearchy theorem tells us that checking a witness may take arbitrarily long:

theorem: NTIME[o(T)] = NTIME[T] [precisely: NTIME[f(n)] = NTIME[g(n)] + time-constructible f, g with f(n+1)=o(g(n))]

Hence Efficiently-Verifiable witnesses better capture mathematical proofs:

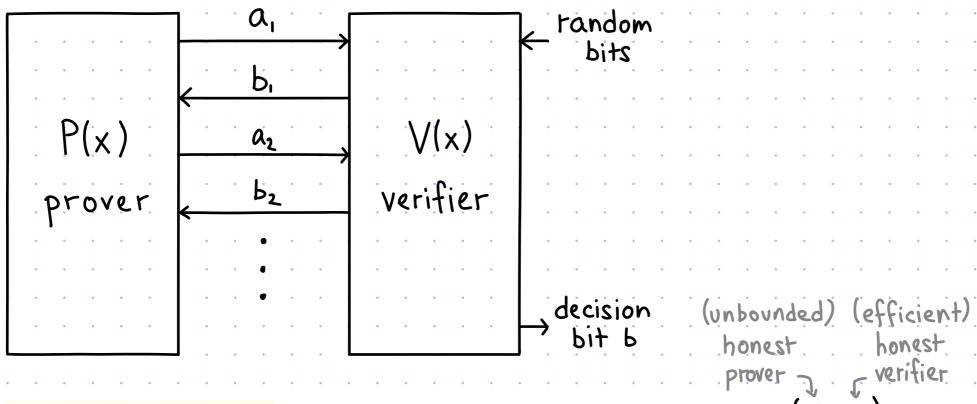
NP = UNTIME[nc] nondeterministic polynomial time

Efficient Mathematical Proofs = NP

```
The definition of the complexity class NP (nondeterministic polynomial time):
 LENP (-> 3 polynomial-time decider D s.t.
                                                                    V (x,π)=|
                                                        Proof T
   completeness: (1) & instance x \in L = 1 poly (1x1) - size witness w D(x, w)=1
                                                        proof \pi V(x,\pi) = 0
    soundness: ② \tance x \( \mathcal{L} \) \tance poly (|x|)-size witness w D(x,w)=0
Example: L=SAT · x is a boolean formula Φ(x1,...,xn)
                     • W is an assignment (a,...,an)∈ {0,1}n
                     • D checks that φ(a,,,,an) = true
Hence NP captures traditional (efficient) mathematical proofs:
                          proof T
                                        . . . (x)
            P(x)
                                        verifier
            prover
```

Interactive Proofs

A revolutionary idea: the verifier may use randomness and interact with the prover



An interactive proof for a language L is a pair (P,V) such that:

- O completeness: $\forall x \in L$ $P_r[\langle P(x;r_p), V(x;r_p) \rangle = 1] = 1$.
- ② soundness: $\forall x \notin L \quad \forall \tilde{P} \quad P_{r}[\langle \tilde{P}, V(x;r_{v}) \rangle = 1] \leq \frac{1}{2}$.

the "best" randomness can be hardcoded in P

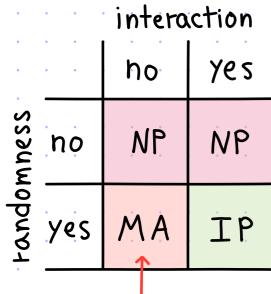
more generally:

$$\geq 1-\varepsilon_c$$

and it suffices
to have
 $1-\varepsilon_c-\varepsilon_s \geq \frac{1}{poly}$
 $\leq \varepsilon_s$

What Is The Power Of Interactive Proofs?

Somewhat degenerate if we leverage only interaction or only randomness:



believed to equal NP (strong PRGs -> MA = NP)

Hence we should leverage interaction and randomness simultaneously.

We wish to understand:

Which languages have interactive proofs? Are there any beyond NP (and MA)?

Isomorphisms Between Graphs

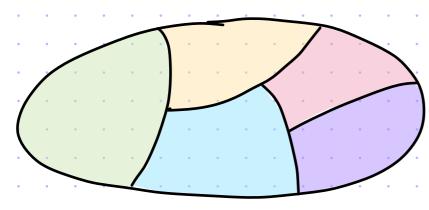
Let $G_0 = (V, E_0)$ and $G_1 = (V, E_1)$ be two graphs on vertices V. $\frac{\text{def:}}{\text{def:}} G_0 = G_1 \quad (G_0 \otimes G_1 \text{ are isomorphic}) \quad \text{if} \quad \exists \text{ permutation} \quad \pi \colon V \to V \text{ s.t.}$ $(u, v) \in E_0 \longleftrightarrow (\pi(u), \pi(v)) \in E_1 .$

If so, we write $G_1 = \pi(G_0)$.

The isomorphism relation is an EQUIVALENCE RELATION:

- it is reflexive: G = G (via the identity permutation)
- it is symmetric: $G_1 = \pi(G_0) \leftrightarrow G_0 = \pi^{-1}(G_1)$
- · it is transitive: $G_1 = \Pi_1(G_0) \wedge G_2 = \Pi_2(G_1) \rightarrow G_2 = (\Pi_2 \circ \Pi_1)(G_0)$

Hence the relation partitions all graphs into EquivaLENCE CLASSES:



Languages for Graph Isomorphism

The graph isomorphism relation induces two languages:

$$GI := \{ (G_0, G_1) \mid G_0 = G_1 \}$$

$$GNI := \{ (G_0, G_1) \mid G_0 \neq G_1 \}$$

Examples:

•
$$\begin{pmatrix} 5 & 1 & 2 & 5 & 1 \\ 4 & 3 & 7 & 2 \end{pmatrix} \in GI$$
. Why? $\pi = \begin{pmatrix} 1 \rightarrow 1 \\ 3 \rightarrow 2 \\ 5 \rightarrow 3 \\ 2 \rightarrow 4 \\ 4 \rightarrow 5 \end{pmatrix}$
• $\begin{pmatrix} 5 & 1 & 2 \\ 4 & 3 & 2 \end{pmatrix} \in GNI$. Why? G , has a triangle but G 0 does not

More generally, GI \in NP, and so GNI \in coNP. But it is not Known if GI (or GNI) is in P.

Q: How to prove that Go \(\xi_1 \)?

In general, it is harder to see than in the above example.

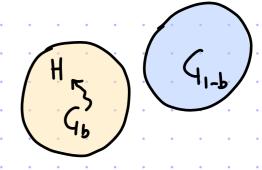
Interactive Proof for Graph Non-Isomorphism

theorem: GNI & IP

$$P(G_0,G_1)$$
 $V(G_0,G_1)$
 $b \leftarrow \{0,1\}$
 $\pi \leftarrow \{permutations on vertices\}$
 $find \vec{b}$ s.t.
 $H := \pi(G_b)$
 $\vec{b} \stackrel{?}{=} b$

Completeness: Suppose that (Go,G,) ∈ GNI (i.e., Go ≠ G,).

Then G_b and G_{1-b} are in different equivalence classes: (H₅)



The honest prover determines b by finding out which graph H is isomorphic to.

NOTE: for now we ignore the efficiency of the honest prover.

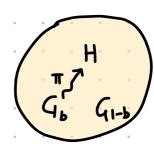
Interactive Proof for Graph Non-Isomorphism

[2/2]

theorem: GNI & IP

$$P(G_0,G_1)$$
 $V(G_0,G_1)$
 $b \leftarrow \{0,1\}$
 $\pi \leftarrow \{permutations on vertices\}$
 $find \vec{b} \text{ s.t.}$
 $H = G_0$
 $\vec{b} = b$

Soundness: Suppose that $(G_0,G_1) \notin GNI$ (i.e., $G_0 \equiv G_1$). The random variable $\pi(G_b)$ is identical to $\pi(G_{1-b})$: Hence $H:=\pi(G_b)$ and b are independent.



We conclude that $P_{\Gamma}[\tilde{b}=b]=\frac{1}{2}$ regardless of how a malicious prover chooses \tilde{b} based on H.

NOTE: it is crucial that b is secret ... but later we learn how to avoid "private randomness"

theorem: IP = PSPACE languages decidable in polynomial space

Let LEIP, and let (P,V) be an IP for L. We show that LEPSPACE.

Fix an instance x and define $q_x := \max_{\widetilde{p}} \Pr[\langle \widetilde{P}, V(x;r) \rangle = 1]$. maximum winning probability

If $x \in L$ then $q_x = 1$.

If $x \notin L$ then $q_x \le \frac{1}{2}$.

It suffices to compute q_x in polynomial space.

PROBLEM: We cannot iterate over ALL provers P because this includes those that require large space to run

IDEA: any interaction transcript has polynomial size (the IP verifier reads it) so we CAN iterate over all transcripts in polynomial space

We show that the optimal prover strategy is computable in polynomial space, and so is the probability q_{x} .

The optimal prover is defined as follows:

```
P^*(x,(a_1,b_1,...,a_i,b_i)) outputs a_{i+1}^* that maximizes the probability that P^*(x) convinces V(x) conditioned on the first i rounds being (a_1,b_1,...,a_i,b_i).
```

claim: $P^* \in PSPACE \rightarrow q_x \in PSPACE$

<u>proof</u>: The optimality of P^* implies that $q_x = \frac{\sum_{t \in R} d(x,t)}{|R|}$ where:

- R are the possible random strings of the IP verifier V,
- -d(x,r) is the decision bit of V(x,r) when interacting with P^* .

Note that d(x,r) is computable in polynomial space:

$$a_{i}^{*} := P^{*}(x, \bot)$$
 $a_{i}^{*} := P^{*}(x, (a_{i}^{*}, b_{i}))$ $a_{k}^{*} := P^{*}(x, (a_{i}^{*}, b_{i}, ..., a_{k-1}^{*}, b_{k-1}))$
 $b_{i} := V(x, r, a_{i}^{*})$ $b_{k} := V(x, r, a_{i}^{*}, ..., a_{k}^{*})$

Indeed: each invocation of P* is in polynomial space (by assumption)

· each invocation of V is in polynomial time (by definition)

A(x) := 1. Initialize c := 0. Hence
2. For each $t \in R$, c := c + d(x,r). Tuns in polynomial space.
3. Output G(R).

claim: P* E PSPACE

proof: Given a transcript tr=(a,b,...,a,bi) of i rounds, define:

$$R[x,tr] := \begin{cases} b_1 = V(x,r,a_1) \\ b_2 = V(x,r,a_1,a_2) \\ \vdots \\ b_i = V(x,r,a_1,...,a_i) \end{cases}$$
 set of random strings consistent with (x,tr)

Membership in R[x,tr] can be checked in polynomial time, and thus polynomial space.

The proof is by (reverse) induction on $i \in \{0,1,...,K-1\}$.

Base case is i=K-1.

By definition of P*,

$$P^*(x,t_r) = P^*(x,(a_1,b_1,...,a_{k-1},b_{k-1})) = \arg\max_{a_k} \Pr[V(x,r,a_1,...,a_{k-1},a_k) = 1]$$

We can iterate over all prover messages a_k and all random strings r in polynomial space. (By reusing space for every a_k and r.)

```
claim: P* E PSPACE
proof: (continued)
                             (We assume that P*E PSPACE for Itrl>i.)
Inductive case is i < K-1.
By definition of P*,
 P^*(x,t_r) = P^*(x,(a_1,b_1,...,a_i,b_i)) = arg max P_r [V(x,r,a_1,...,a_i,a_{i+1},a_{i+2},...,a_k)=i]
where ait,..., at are optimal prover messages for (x, tr, r, ait):
  b_{i+1} := V(x,r,a_1,...,a_i,a_{i+1}) in polynomial time
 Q == P* (x, (ai,bi,..., ai,bi, ai+i, bi+i)) in polynomial space (inductive assumption)
  bitz := V(x, r, a1, ..., ai, ait, ait) in polynomial time
```

 $a_k^* := P^*(x, (a_i,b_i,...,a_i,b_i, a_{i+1}, b_{i+1}, a_{i+2}, b_{i+2},..., a_{k-1}, b_{k-1}))$ in polynomial space (inductive assumption)

We can iterate over all prover messages ain and all random strings t.

We conclude that P* is computable in polynomial space.

Error Reduction

How to reduce the completeness error & and/or soundness error & of an IP?

Idea: Run the IP t times in sequence and (somehow) decide based on that.

For every IP prover \tilde{P}_{ϵ} , define the random variables $(Z_{i}(x,\tilde{k}))_{i\in[t]} = \tilde{l}_{i}$ IP verifier accepts. The RVs are independently and identically distributed.

Moreover: • X ∈ L → Vie[t] Pr[Zi(x,Pe)=1]>1-Ec.

· X&L→ \ie[t] \P_E Pr[Z;(x,PE)=1] & Es.

The case of PERFECT COMPLETENESS (Ec=0):

$$V_{AND}(x; (g_1,...,g_t)) := \bigwedge_{i \in [t]} V(x; g_i)$$

· perfect completeness is preserved : & = 0

$$\Pr\left[\langle P_{\epsilon}(x), V_{\text{AND}}(x; (g_1, ..., g_{\epsilon})) \rangle = 0\right] = \Pr\left[\bigwedge_{i \in [t]} \Xi_i(x, P_i) = 0\right] = 1 - \prod_{i \in [t]} \Pr\left[\Xi_i(x, P) = 1\right] = 1 - 1 = 0$$

· Soundness error decays exponentially: Es = Es

$$\Pr\left[\langle \widetilde{\ell}, V_{AND}(x; (g_1, ..., g_t)) \rangle = 1\right] = \Pr\left[\Lambda_{i \in [t]} \; \Xi_i(x, \widetilde{\ell}) = 1\right] = \prod_{i \in [t]} \Pr\left[\Xi_i(x, \widetilde{\ell}) = 1\right] \leqslant \prod_{i \in [t]} \varepsilon_s$$

Error Reduction

How to reduce the completeness error Ec and/or soundness error Es of an IP?

Idea: Run the IP t times in sequence and (somehow) decide based on that.

What about the case of IMPERFECT COMPLETENESS (E, >0)?

The AND verifier increases the completeness error: &:= 1-(1-&) < t. & t. & .

- This option demands small &c to begin with.

Alternatively, consider the OR verifier: $V_{OR}(x; (s_1,...,s_E)) := \bigvee_{i \in [E]} V(x; s_i)$

- · completeness error decays exponentially: $\mathcal{E}_{c}^{l} := \mathcal{E}_{c}^{t}$ $P_{r}\left[\langle P_{c}(x), V_{or}(x; (g_{r},...,g_{t}))\rangle = 0\right] = P_{r}\left[\bigvee_{i \in [t]} Z_{i}(x,P_{c}) = 0\right] = \prod_{i \in [t]} P_{r}\left[Z_{i}(x,P_{c}) = 0\right] \leqslant \prod_{i \in [t]} \mathcal{E}_{c}.$
- soundness error increases: $\mathcal{E}_s^1 := I (I \mathcal{E}_s)^t \leq t \cdot \mathcal{E}_s$ $P_r \left[\langle \widetilde{P}_{\epsilon}, V_{oR} \left(x ; (\varsigma, ..., \varsigma_{\epsilon}) \right) \rangle = I \right] = P_r \left[V_{i \in [t]} \ Z_i(x, \widetilde{P}_{\epsilon}) = I \right] = I \prod_{i \in [t]} P_r \left[Z_i(x, \widetilde{P}_{\epsilon}) = 0 \right] \leq I \prod_{i \in [t]} (I \mathcal{E}_s).$
- -> This option demands small &s to begin with.

What if neither \mathcal{E}_c nor \mathcal{E}_s is small (e.g. $\mathcal{E}_c = \frac{1}{3}$ and $\mathcal{E}_s = \frac{1}{3}$)?

Error Reduction

How to reduce the completeness error Ec and/or soundness error Es of an IP?

Idea: Run the IP t times in sequence and (somehow) decide based on that.

The random variable $Z(x,\tilde{p}):=\frac{1}{t}\sum_{i\in [t]}Z_i(x,\tilde{p})$ has mean $\mathbb{E}[Z(x,\tilde{p})]=\mathbb{E}[Z_i(x,\tilde{p})]$. By a Chernoff bound, $Z(x,\tilde{p})$ concentrates around its mean:

$$\forall \ \forall \ \geqslant \ 0 \ \mathbb{P}_{\Gamma}[|\mathcal{Z}(x,\widetilde{P}) - \mathbb{E}[\mathcal{Z}(x,\widetilde{P})]| \geqslant \delta] \leq 2 \cdot e^{-\frac{t \delta^2}{4}}$$

This motivates the MAJ verifier:

$$V_{MAJ}(x; (g_1,...,g_E)) := 1$$
. Set the treshold $\tau := \frac{1-\epsilon_c+\epsilon_s}{2}$.

- 2. For every ie[t], compute b:= V(x;gi).
- 3. If \(\frac{1}{E}\)\(\Sie\)[\(\text{E}\)] \(\text{Die}\)[\(\text{E}\)] \(\text{Die}\)\(\text{E}\)\(\text{Die}\)\(\text{E}\)\(\text{Die}\)\(\text{E}\)\(\text{Die}\)\(\text{E}\)\(\text{Die}\)\(\text{E}\)\(\text{Die}\)\(\text{E}\)\(\text{Die}\)\(\text{E}\)\(\text{Die}\)\(\text{E}\)\(\text{Die}\)\(\text{E}\)\(\text{Die}\)\(\text{E}\)\(\text{Die}\)\(\text{E}\)\(\text{Die}\)\(\text{E}\)\(\text{Die}\)\(\text{E}\)\(\text{Die}\)\(\text{E}\)\(\text{Die}\)\(\text{E}\)\(\text{Die}\)

$$X \in L$$
 $1-\xi_c$
 $1-\xi_c+\xi_S$
 ξ_S
 $X \notin L$
 $X \notin L$

$$\begin{array}{l} \cdot \times \in L \rightarrow P_{r}[\langle P(x), V_{MAT}(x) \rangle = 0] = P_{r}[Z(x,P) < T] \leqslant P_{r}[|Z(x,P) - \mathbb{E}[Z(x,P)]| \geqslant \frac{1-\mathcal{E}_{c} - \mathcal{E}_{s}}{2}] \leqslant 2 \cdot e^{-t \cdot (1-\mathcal{E}_{c} - \mathcal{E}_{s})^{2}}. \\ \cdot \times \not \in L \rightarrow P_{r}[\langle \widetilde{P}, V_{MAT}(x) \rangle = 1] = P_{r}[Z(x,\widetilde{P}) \geqslant T] \leqslant P_{r}[|Z(x,\widetilde{P}) - \mathbb{E}[Z(x,\widetilde{P})]| \geqslant \frac{1-\mathcal{E}_{c} - \mathcal{E}_{s}}{2}] \leqslant 2 \cdot e^{-t \cdot (1-\mathcal{E}_{c} - \mathcal{E}_{s})^{2}}. \\ \text{Hence if } t \geqslant \frac{\ln 2/\mathcal{E}}{(1-\mathcal{E}_{c} - \mathcal{E}_{s})^{2}} \text{ then } \mathcal{E}_{c}^{l}, \mathcal{E}_{s}^{l} \leqslant \mathcal{E}. \end{aligned}$$

Bibliography

Miscellaneous

- Introduction to metamathematics, by Stephen Cole Kleene.
- Gödel, Escher, Bach: an eternal golden braid by Douglas Hofstadter.
- The annotated turing, by Charles Petzold.
- · Logicomix. Apostolos Doxiadis, Christos Papadimitriou, Alecos Papadatos, Annie Di Donna.
- ()Proofs, secrets, and computation), by Silvio Micali.

Definitions

Introduces interactive proofs

- [GMR 1985]: The knowledge complexity of interactive proof-systems, by Shafi Goldwasser, Silvio Micali, Charles Rackof.
- [Babai 1985]: Trading group theory for randomness by László Babai.

 Public-coin interactive proofs
- [BM 1986]: Arthur-Merlin games: a randomized proof system, and a hierarchy of complexity classes, by László Babai, Shlomo Moran.

 Introduces AM and MA complexity

Technical sections

- [IW 1997]: P = BPP if E requires exponential circuits: derandomizing the XOR lemma, by < AM = NP (plausibly) Russel Impagliazzo, Avi Wigderson.
- [GMW 1987]: How to play any mental game or a completeness theorem for protocols with honest majority, by Oded Goldreich, Silvio Micali, Avi Wigderson.
- Hoeffding and Chernoff concentration inequalities.