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What are Mathematical Proofs?

One answer : an aPProximaHon oQ UnderS‘l‘onding.

i ] { W . Stoti bout Shi E
A proof is whatever convinces me.  (Shimon Even, 1978) [by°*(‘,§§d‘*go,dmc;\“°" V"‘]

Logic formolizes the notion of “proof” so it can be studied using mathematics itself.

| b e R . INTRODUCTION TO
In particular this leads to MeTaMATHEMATICS. METAMATHEMATICS
A formal system is o tuple (alphobet grammar, axioms inference rules), — goone & s

A (rve) t+heorem is o sentence that has o (valid) proof :

o list of sentences whose lost sentence is the theorem such that o lgical derivation

{Irom axioms £ assumptions

every sentence is an axiom, an assumption, or derived from prior sentences.

Fundamental question:  HitBERT'S ENTSCHEIDUNGSPROBLEM

is there a procedore to determine if o sentence is a +heorem <

¥ sentence X %X or X has o prosf

NO . < do {IT:I.'. every strong enough formal system is not complete
ho sich (431 C,on IT2: every strong enough formal system cannot prove its own consistency

P rocedure exists : ¥ sentence x; ot most one of X of X hos o Proo?
1935: Church (via A-calculus)

1936 T\)ring (via Turins machines)




Proofs and Computation

Mathematical proofs were implicitly always about computation.
Formlod‘ing (and omswerina) the En+scheidun35problem mode this explic'ﬂ',

Compvutation is formalized via Turins machines (and other CqUiVOJQV\')' models ).

This enobles the study of CompuTasiLity Theory and  CompLEXiTy THEORY

Undecidabil'\’ry of a langoage rules out any mathematical prooF.

Lomsuagqs with NovpeTeRMinisTiC WiTNESSES correspond to t+heorems with mathematical proofs:

. verifier V
A Ianauasq L is in NTIME[T] iff 3 mochine M +that runs in time T(IxI) st
theorem proof T Vi(xw =1

* Completeness: ¥ instance xel 3 T(x)-size witness w M(xw)=1I

theorem ProoF T Vixm=o0
* Soundness: V instance xg L ¥ TOx)-size witness w  M(xw)=0

The NTIME - hiearchy theorem tells vs that checKing o. witness may taKe arbitrarily long:
theorem: NTIME[o(T)] S NTIME[T] [ precisely: nrimelfm] & MTiMe[g(] ¥ Hime-constrociible £,q with fnn)=o(g(w) |

Hence EFFicienTLy -VERIFIABLE witnesses better capture mathematical proo(fs:

NP=CL6/N NTIME[n]) - nondeterministic Polynomiql time



Efficient Mathematical Proofs = NP

The ddinﬁ‘iov\ Oc the COVV\P\QX\*y class NP (nondde.rminisﬁc Polynom\'al time ) :
verifier V

L e NP ¢« 13 Polynomia\—-ﬁMQ deader D st
theorem proof V (xm)=|

complereness: D ¥ instance xe L I poly ()-cize  witness w  D(x,w)=1
theotrem proof Vix,m)=0
soundness: @ ¥ instonce xg L ¥ poly(x)-size  witness w  Dlx,w)=o0

Example: L=SAT -« X is a boolean formvla @(xi,.,xn)
« W is an assignmeni- (Ql,.../ah)e{@l}“

+ D checks Hhat ®la,,. a,)= trve

Hence NP copturet  fraditional (efficient) mathematical proots

P(x) proof T V(x)
verifier

prover




Interactive Proofs

A revolutionary idea: the verifier may vse randomness ond interact with +he prover

Q, Fandom
] q £ bits
.< !
P()() Ay J V(x)
decision  (ynbounded) (efficient)
bt b honest honast

prover ~ ll,vqn'QiQr
An  interactive proof for o language L is oo poir (PV) svch hat:

mote 3znem\\y:

O completeness: ¥ xe L Pr((P(x;n),V(xm)%l]H. 2 |- €.

1y and it suffices
to have
~ = | l’sc‘ss"",—oT),'
@ sSoundness: Vxg L ¥7P %[(P/V(x;r\,)):)]s Z8 < &
] v

He “best" rondomness can be hardeoded in ’15'



What Is The Power Of Interactive Proofs?

Somewhat deacnerod'e it we leverage only interaction or only rondomness :

interaction
ho Yes
v no [ NP | NP
3
gyes MA | IP
- A

Llse\iczvec\ o eqvq\ NP (Sh—on% PRGs — MA= NP)
Hence we shovld Ievemaq intferaction ond randomness simvlfaneovsly.
We wish to vunderstand:

Which )Qnauaaes have interactive proofs?
Ave there any beyond NP (and MA)



Isomorphisms Between Graphs

Let Go=(V.E,) and G,=(VE) be two gmphx on vertices V.

Cie_P: C03q| (Go X C, are )Somorphic) 'J; 3 Permv+a+i0h T: V>V st
(uy)eEy > (Tw),Tv) € E, .

It so, we write G,=7(G,)

The isomorphism relation is an Eevivarence ReLation:

« it is reflexive: G= G (via the identity permutation)

+ it IS symmetric: G,-T(G) & C,ﬁ““@n)

it is tronsitive s G =T (G) A G, =T (G,) = C,=(T,°W)(G,)

Hence the relotion partitions all c\‘mphs info Eauivarence Classes:




Languages for Graph Isomorphism

The qroph isomorphism Felation  indvuces two lanavaﬂes:

GI=§(Go,6) | Go=G. ) GNT = § (Go,G) | Go# G}

Exoamples:
1 1 (-1
Y 322
° (ﬁz ’5 l) € GI. \/\/hy? T['-;{g'-a_z
% 3 4 3 45

1 1

. (SQQ‘ y i z) € GNI, U)hy? G, has o ’rr]av\3|Q but G, does net
4 3 4 3

More gemerally, GI € MP, oand so GNI € coNP.
But i+ is not Known if GI (or GNI) js in P.

Q: How fo prove that Go#¢G, ? In general , it is harder fo see
thon in the above exomple.



Interactive Proof for Graph Non-Isomorphism [1/2]

theorem: GNI € IP

P(Go G,) V(6o 6,)
be {o,1}

T e { permutations on "Q"ﬁms}
find bst. H  HeT (Gs)
L bIb

H= ap 3

Completeness: Suppose that (Go,G,) € GNI (i.Q., Got G1).
Then G, and G, are in different QCIviVO\\QnCQ classes:

The honest prover determines b by {inding ovt which graph H is isomorphic o,

Note: for now we ignoe the efficiency of the honest prover.



Interactive Proof for Graph Non-Isomorphism [2/2]

theorem: GNI € IP

P(Go G,) V(6o 6,)
be {o,1}

T e { permutations on vertices }
find b st
H= ap

Soundness: Syppose +hat (Go,G,) ¢ GNI (i, Go= Gi).

The rOV\dOW\ variab\e TF(CL) 1S ]dey\‘\'ico‘\ ‘l‘o Tr(q,,,,):
Hence H:=T(C,) ond b are Independent.

We conclude that Fr[b=b]=", regordless of how a maliciovs prover
chooses b bosed on H.

Note: it is crucial *hat b 1s secret . byt loter we learn how Yo aveid "Priva’re randomness.
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Upper Bound on IP [1/4]

~ languages decidoble 1n polynomial space
theorum: IP S PSPACE 'Y petynom! P

Lot |.€IP, and let (PV) be an IP for L.
We show that | e PSPACE.

]

Fix an instance x and C\d\iV\e Clx’

max T [( F,V(x;r)7='].
P

TI{ xel then 9c=1-

j_’(_‘ X L Hen CIx‘l/z- } Lt S\’Hﬂces to compyte qx n Polynomia\ Spacg.

PROB LEM: we Cawnnot iterate over AL provers ?’ ba,cavse

this includes Those that requite large space to tvn

Ipea any interaction transcript hos polynow\ia\ size (the IP verifier reads it)

So we CAN iRrate over all tronscripts in polynomial space

We show that the optimal prover strafegy 1s. computable
In polynomial  space , ond so is the probab'||§+y 9x -

11



Upper Bound on IP [2/4]

The optimal prover is defined as tollows:
P*(x,(ai,by, -, b)) ovtputs Ol that moximizes the probability that
P*(x) convinces V(x) conditioned on the first i rounds being (ai,bi, ..., a;bi).

claim: P* € PSPACE — q, € PsPACE

proof:  The optimality of P* implies  +hat qx=Zr€K|Kc|“X'r) where :

- R are the possible random strings of the IP verifier V,
— d(x,r) is the decision bit of V(x;r) when interacting  with P,

Note that dlx,r) is compvtuble in polynomial space:
of = P"(x,L)  aF =P*(x,(akb) o¢" = P*(x, (aF b, ., 4, b))

b, :=V (x,r,af) b, =V (xr,afar) bk =V (x,raf ., a)
Indeed : « each invocation of P* is in polynomial space. . (by assumption)
. each invocation of V i< n polynomial time  (by definition)

Alx) := |. Initialize c:=o0.
Hence 2. For each teR, c:=c+d(xr), Funs in polynomml Space .
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Upper Bound on IP [3/4]

claim : P¥ e pspace

ptoof: Given a transeript tr=(a., b, .., &;,bi) of rounds define:

b| = V()(,\',Q.)

Rlxtr] :=4teR | b=V (x,r a,a.) set of rondom S+riv\as
: consistent with. (x,tr)
bi= V(x,t,a .., &)

Membership in RIxtr] con be checked in polynomial time  and thus polynomial space.
The Proo‘; 1S by (reverse) induction on ie{O,\,...,K-\}.

Base case s 1=K-I.

By definition of P¥

P¥(x, ) = P*(x, (aby,..., 0k, b)) = argmox  Pr [V(x,r, q./...,a,(,,,qk)=|]
Ok reR[xt]

We can itetate over all prover messages G and all random Sfrings F

in_polynomial space. (By reusing space for every ay and 1)
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Upper Bound on IP [4/4]

claim : P¥ e pspace

proof: ( continved)
Tnductive case is i< k1. (We assume +hat P¥e Pspace for ltrl>).)

By definition of P¥

P*(x tr) = P*(x, (aub,..,00,b, ) = argmox P [V(X,", Q‘,...,a;,%.,ao.fl,.,.,a:)--t]
Qin  F€ R[X/h‘]

* .
W})Ql’ﬂ. Qisy ,...,a’,f are oPhMQ\ prover MQSSo‘sqs -For (X,h'/ - a-H_,);

b;,,, ;=\/(x,r, Q,, ., Qi, Ay In Polynomial fime

O\’i‘:;_ = P (x, (a,by, ..., Qi,bi, Qi b )) In. polynomial spoce . (inductive assumption)

bi+z ‘3\/()(, r, al,..-,Gi,GiH,aifz) In P‘Dl)"‘o"’“o‘| Fime
P x .
0: =P ()(, (Ql,bl,.../a;,bi,(liﬂ,bi+l,Giﬁ,biu,...,az—\, bk..)) Inpolynomial space (inductive assumption)
We can iterate over all prover messages G, and all random sttings I,

We conclude that P¥ s computable in . polynomial space. =
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Error Reduction [1/3]

How to reduce +Hhe melzfenzss error €. ond/or Soundness error & o\-\ an IP7

Tdeo: Run the TP E times in Sequence and (somehow) decide based on that.

~o

For every IP prover P, , define the random variables (2Zi(xR)); .= “i-th IP verifier accepts.
The RVs are independently and identically distributed.
Moreover: * Xel - VYielt) _Er[Z;(x,ﬁ:)-‘-l]ZI-E(,

¢ xgL— Yielt) ¥R B[ 2x,R=]< .

The case of PerFecT CoMPLETENESS (€c¢=0) %  Vawp X 8,-8)) := Njerer VI(x; &)
+ perfect completeness is preserved : £ :=0
Pr [< B&), Vo (x; (g',...,yt))7=0] = P [/\ien;:\ Z;(x,ii)=0]= | - ;g;ﬂ BlzixP)=1)=1-1=0

+ Soundness error decays exponentially: € := 3

Be [<B Voo (x; urg) V=1 ] = B[Ny ZileRI=1]= T Bel2i0R)=1] < era
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Error Reduction [2/3]

How to reduce the completeness error €. and/or Soundness error & of an IP7
Tdeo: Run the TP E times in Sequence and (somehow) decide based on that.
Whot about the cose of TmperFect CompLeTenESS (€c70) 7

The AND verifier increases the compleleness error: £ := I-(1-€)° < E-€.

=» This option demands small €. to begin with.
Alternatively, consider the OR verifier : Vo (x; (8.8 == Viegyy V(x; &)

. completeness error decays exponentially : &':= €5

Pr [<B0, Vi (x (g.,...,gt)»‘-'o] = Pr [vie[el 2;(x,R) =0]= ;EEE] B [2i(x,r)=0) ¢ ;g—&] .
. _soundness ertor _incteases: £ = |- (|'£s>t$ E- €

Pr [<B Vor (x; (0ueg)))=1]= Br [Vierq 2RI =1]= 1- ;EEﬂ B[zi(xR)=0) s - ;g;ﬂ (1-&) .
=» This option demands small £ to be,g’\n with.

What if neither € nor €5 is small (eq. €.=/; and €s='/3)2
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Error Reduction [3/3]

How to reduce +Hhe melzfenzss error €. ond/or Soundness error & o\-\ an IP7

Tdeo: Run the TP E times in Sequence and (somehow) decide based on that.

The rondom variable 2Z(x,P):= + Zierrs 2i(%,P) has mean E[2(x,P)]= E[2i(x,P)].

By a Chernoff bound, 2(x,P) concentrates ground its mean:

~ ~ at-z-z
¥¥20 FBrl26P-E[xP)]|53]s2¢ % |

This motivates the MAT verifier:

Viag(%: (8,-8)) = |, Set +he treshold T:= \—e?:es. I'../&XGL
2. for every ielt], compote bi:=V(x;8i). P

3. Tf LTeabizT ovtput 1; else ovtput 0. [ kgl
El20¢P>1-¢c Chemett boond

/ / .
c xeL = Pr[<P() Vi) )=0] = B [2(x,P) <T]¢ Pr[[2tcP-E2xP]|> b ] 2. g b (HEeE)

" XgL- -E|'E<§/Vms(")7=|] =f|-[Z(X,§)3’C] 3 EP[IZ(X,F)-E[E(X,’P')N& '__—-5‘8;_'5 ]sz.c-(:.(l-&-es)’-’

Hence if E 2 InYe  Hen € lelce Elz6P)<& \Chmﬂ; bound
(l"’fc"‘SS)" ¢+ -S
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